

1 © AIE 2019

Technical Design Document

Contents

Game Details... 2

Team Members ... 2

Game Concept .. 3

Technical Goals ... 4

Technical Goal 1 – Enter descriptive name ... 4

Technical Goal 2 – Enter descriptive name ... 4

Technical Goal 3 – Enter descriptive name ... 4

Technical Risks .. 4

Technical Risk 1 – Enter descriptive name ... Error! Bookmark not defined.

Technical Risk 2 – Enter descriptive name .. 5

Features/Mechanics/Tasks ... 5

Deliverables .. 6

System Requirements ... 6

Target Device 1 - Enter target platform/device name .. 7

Target Device 2 - Enter target platform/device name .. 7

Third Party Tools ... 7

File Formats .. 8

Coding Conventions .. 8

Source Control .. 9

Game Flow .. 10

Game Objects and Scripts ... 12

Gameplay Systems .. 13

Gameplay System 1 – Enter descriptive name ... 13

Gameplay System 2 – Enter descriptive name ... 14

Input Method(s).. 15

User Interface ... 16

2 © AIE 2019

Game Details
• Game Name: The Fog

• Team Name: STAB Studios

Team Members
List of technical team members and broad overview of their roles.

Name Job Title Responsibilities/Roles
 Enter each team member

Annelise Artist Creation and animation of zombie
characters and other essential in-game
assets.

Collaborate with Chantelle to ensure a
unified visual style between characters
and environments.

Work with Sion to ensure that art assets
align with game mechanics and overall
design.

 Chantelle Artist Design and creation of environment art
for the graveyard, swamp, and church
settings.

Develop environmental animations,
lighting, and atmospheric effects to
enhance the game's eerie ambiance.

Coordinate with Annelise and Sion to
ensure a seamless integration of
environment art with game mechanics
and character assets.

 Brock Programmer Collaboratively work with Tom on
gameplay programming, including the
on-rails movement system, shooting
mechanics, and local cooperative
gameplay features.

Share responsibilities in developing the
game’s user interface, including score

3 © AIE 2019

tracking and display systems, as well as
any necessary in-game menus.

Work closely with Sion on implementing
and fine-tuning game mechanics based
on design inputs, ensuring a seamless
integration of design ideas into the
programming framework.

Tom Programmer Collaboratively work with Brock on
systems programming tasks, such as
optimizing the game for the arcade
hardware, ensuring smooth performance
and responsiveness.

Share responsibilities in implementing
gameplay features, and develop tools or
scripts that may help streamline the
development process.

Maintain a clean, organized, and well-
documented codebase to facilitate
efficient collaboration and future
adjustments, ensuring that both
programmers can work

Sion Designer Designing game mechanics, level layouts,
and player progression systems.

Work closely with both artists and
programmers to ensure the game design
is well-implemented and aligns with the
visual and technical aspects of the
project.

Conduct play-testing sessions, gather
feedback, and iterate on the game design
to enhance the player experience.

Game Concept
In “The Fog”, players traverse through distinct, spooky scenes, battling different types of zombies using an

arcade gun control system and on rails movement. As they progress, they face increasing challenges that end

4 © AIE 2019

in a boss fight against the King Zombie. The game, with its scoring system and co-op mode, encourages

competitive play and invites players to improve their skills and compete for high scores.

Technical Goals
What are the technical aspects of your game that your team aim to deliver? E.g. Challenging AI, Procedural Generated

Levels, Interesting Jetpack mechanics.

Who will work on these goals?

Technical Goal 1 – Enemy State Machine Implementation
Who’s Responsible: Brock

Description: Design a comprehensive State Machine to guide the AI of different enemy types across all game

levels. The State Machine will dictate how enemies respond to player actions, environmental triggers, and other

game events. Ensure that the behaviour nodes are modular for reusability across different enemy types and

levels, and that they can dynamically react to varying game scenarios. Extensive testing should be carried out to

ensure balanced and intended enemy states, with thorough documentation provided for team understanding and

future adjustments.

Technical Goal 2 – Level Progression Mechanism
Who’s Responsible: Brock

Description: Develop a robust mechanism to track player progress and score, enabling seamless transitions to

subsequent levels upon current level completion. Ensure transitions between levels are smooth, retaining the

player's score and other relevant game data. Conduct testing to identify and rectify any bugs or issues, and

document the mechanism for team understanding and future adjustments.

Technical Goal 3 – Create an Effective Weapon Swap Mechanic
Who’s Responsible: Tom

Description: Create a weapon swap mechanic that allows the player to swap to a fully automatic gun. The gun

will operate on a timer, which can be represented as a slider, and will only become available when the slider

reaches full value. The weapon slider can gradually decrease as the player uses the automatic gun. This will

keep gameplay interesting and help the player when in desperate survival situations.

Technical Risks
What are the technical (i.e. related to programming) features and ideas most likely to cause problems? E.g A

mechanic requires learning new design patterns and 3rd party libraries you’ve never used before. Or none of

the programmers have experience with AI.

What can you do to reduce the risk? E.g Bob will perform additional research and will spend the first two days

making a test project to prove this idea is possible. If not, we will cut the idea.

Put into dot points, too much text

5 © AIE 2019

Technical Risk 1 – Developing Diverse and Complex AI Behaviours

What’s the risk about: The game “The Fog” features a variety of different enemy types, each requiring unique

AI behaviours to challenge the player and keep the gameplay interesting. Even with some experience in using

AI state machines, designing and implementing a wide range of distinct, smooth, and challenging behaviours

for each enemy type is a complex task. The risk is that the AI may not behave as intended, could have

performance issues, or may not provide a sufficient challenge or variety to keep players engaged.

How will risk be mitigated:

To address this challenge, the team will start by clearly defining the desired behaviours for each enemy type,

breaking them down into manageable tasks. We will develop one AI behaviour at a time, ensuring that it is

fully tested and refined before moving on to the next. Regular playtesting sessions will be conducted to assess

the AI’s performance and challenge level, gathering feedback to make necessary adjustments. This approach

will facilitate the creation of efficient and varied AI behaviours, significantly enhancing the gameplay

experience. If an effective state machine cannot be built. We will use a free pre-built Unity asset packs that will

allow us to control enemies.

Technical Risk 2 – Implementing Local Co-op Features

What’s the risk about: Implementing local co-op features requires a robust system for handling multiple

players on the same screen, ensuring that the game provides a balanced and enjoyable experience for all

players. This includes managing player input for multiple controllers or input devices, ensuring that the UI

correctly displays information for all players, and balancing the gameplay to accommodate the increased

player presence.

How will risk be mitigated:

To address this challenge, Brock and Tom will undertake comprehensive research on best practices for

implementing local co-op in Unity. A simple prototype that includes basic co-op functionality will be developed

to solidify this understanding and identify any potential challenges early on. This prototype will feature

character movement, shooting, and displaying player-specific information on the UI. Once the prototype is

successfully implemented and the team feels confident in their approach, the co-op features will be integrated

into the main game. We will conduct regular playtesting sessions with multiple players to ensure that the co-

op experience is enjoyable and balanced, making adjustments as necessary based on player feedback. If coop

functionality cannot be achieved, we have a contingency plan to revert back to single player functionality.

Features/Mechanics/Tasks
A list of exactly what systems exist in your game and who is responsible, including scheduled dates for completion.

Feature/Mechanic Who’s responsible Scheduled Date

 Enter each feature/mechanic

Player Movement Brock/Tom November 6th

6 © AIE 2019

Shooting/Aiming Brock/Tom November 9th

Reloading Brock/Tom November 9th

Enemy and environment assets Annelise/Chantelle November 9th

Damage/Health

Brock/Tom November 10th-12th

Death

Brock/Tom November 10th-12th

Co-op features Brock/Tom November 12th

UI / Scoring Brock/Tom/Sion November 15th

Enemy AI/Animations Brock/Tom November 19th

Items/Powerups Brock/Tom November 24th

Deliverables
What will you deliver at the end of production?

Deliverable Who’s Responsible Who’s the Owner
 Enter each platform/input

Windows Executable Build Brock/Tom Modern Arcades

WebgGL / Itch.io Build Brock/Tom Modern Arcades

Full Game Documentation STAB full team Modern Arcades

Art and Asset Package Annelise/Chantelle Modern Arcades

Sound and Music Package Sion/Brock Modern Arcades

Source Code Brock/Tom Modern Arcades

System Requirements
What devices is your game targeting? What’s the recommended hardware? Portrait or Landscape mode on mobile?

7 © AIE 2019

Target Device 1 – Arcade Cabinet
• Recommended Hardware: CPU: Intel i5 (7th Gen) or equivalent

• GPU: NVIDIA GeForce GTX 1050 or equivalent

• RAM: 8GB

• Storage: 10GB free space

• Display: Full HD Monitor (1920x1080 resolution)

• Audio: Integrated stereo speakers

• Networking: Ethernet port for possible future online scoreboards or updates

• Platform Specific Requirements:

• Controls: Arcade cabinet controls including gun and buttons

Add link to reference cabinet

Target Device 2 – PC
• Recommended Hardware: CPU: Intel i5 (7th Gen) or equivalent

• GPU: NVIDIA GeForce GTX 1050 or equivalent

• RAM: 8GB

• Storage: 10GB free space

• Display: Full HD Monitor (1920x1080 resolution)

• Audio: Integrated stereo speakers

• Networking: Ethernet port for possible future online scoreboards or updates

• Platform Specific Requirements:

• Controls: Mouse and Keyboard

Third Party Tools
• Unity Engine 2022.3.11f1

• Visual Studio Community Edition 2022

• Photoshop

• Z Brush

• Nomad Sculpt

• Substance Painter

• Adobe Audition/Audacity/Logic Pro

• Perforce

• DOTween (HOTween v2) by Demigiant

8 © AIE 2019

File Formats
Models:

.FBX: A binary file format that accommodates complex 3D models and animations. This format is universally

recognized and ensures seamless integration of intricate model designs and animations.

Textures:

.PNG: A preferred image format for game textures, combining lossless compression with support for

transparency, resulting in high-quality visuals.

.JPG: An image format suitable for textures where transparency is not required, providing a balance between

quality and file size.

Sounds:

.WAV: A lossless audio file format chosen to deliver the highest quality sound, ensuring crisp and clear audio

playback.

Other Assets:

.MAT: Files that store material data, including how 3D models are rendered and references to the necessary

textures.

.ANIM: Files containing animation data, capturing the motion and transformation of game objects.

.PREFAB: Prefabricated files that store predefined game objects, complete with their associated components

and settings, allowing for consistent and reusable elements within the game.

Scripts and Code:

.CS: Files containing the C# programming code that drives the game's functionality and logic.

Scene and Project Files:

.UNITY: Files that capture the configuration and arrangement of game objects within a particular scene.

.UNITYPACKAGE: Comprehensive package files that may encapsulate various game assets, from scenes and

prefabs to scripts and textures, facilitating straightforward sharing and importation of game components.

By adhering to these file formats, we ensure that all game assets are stored and delivered in a manner that is

both standardized and optimal for high-quality game performance. This consistency across different types of

assets contributes to a smoother development process and easier asset management.

Coding Conventions
What coding conventions will your team use? Everyone on the team should use the same conventions.

Use an existing guideline as a template, rather than create one from scratch. One example can be found at

https://csharpcodingguidelines.com which also includes a Visual Studio plugin to automatically analyse your codebase

(The C# Guidelines Analyzer).

https://csharpcodingguidelines.com/
https://csharpcodingguidelines.com/

9 © AIE 2019

Our team will adhere to a standardized set of coding conventions to ensure consistency, readability, and

maintainability across our codebase. We have decided to use the guidelines provided by the C# Coding

Guidelines (https://csharpcodingguidelines.com) as a template for our conventions.

Key aspects of our coding conventions include:

Naming Conventions:

• Classes and Methods: Use PascalCase for class names and method names.

• Variables: Use camelCase for variable names, and ensure names are descriptive and clear.

• Constants: Use uppercase letters with underscores separating words.

Code Layout:

• Indentation: Use spaces instead of tabs with a standard indent size of 4.

• Braces: Use the Allman style, placing open braces on a new line.

• Line Length: Aim to keep lines under 120 characters long for readability.

Commenting and Documentation:

• XML Documentation: Use XML comments for all public classes, methods, and properties.

• Inline Comments: Use inline comments sparingly, and only when necessary to explain complex pieces

of code.

Error Handling:

• Use Exceptions: Use exceptions for error handling rather than return codes.

• Try-Catch: Only catch exceptions that can be handled or logged appropriately, and avoid empty catch

blocks.

Best Practices:

• Code Reusability: Aim for modular and reusable code where possible.

• Use Design Patterns: Apply appropriate design patterns to solve common problems in a clean and

efficient manner.

Testing:

• Naming Tests: Name test methods clearly, describing what they test and the expected outcome.

By adhering to these coding conventions, our team aims to maintain a high standard of code quality

throughout the development of our game. This will facilitate easier collaboration, debugging, and future

maintenance of the codebase.

Source Control
Which source control will be used? What rules should all team members adhere to when using source control?

https://csharpcodingguidelines.com/

10 © AIE 2019

Source Control Repository: Perforce

Source Control Client Tools: Visual Studio

Game Flow
List the scenes in the game, and a short description of what the scene is responsible for.

Scene Who’s responsible What is does

 Enter each game menu

Main Menu Brock/Tom

Starting menu, starts a new single
or multiplayer game, or exits

Leaderboards Menu Brock/Tom Menu for checking high scores,

return to main menu

Main Game Scene

Brock/Tom Main game loop, contains all

gameplay, environments, enemies.

Handles pay to continue, returns to
main menu if game is complete or
player does not wish to continue

Credits Scene Brock/Tom Rolls credits, return to main menu

11 © AIE 2019

12 © AIE 2019

Game Objects and Scripts

Further Information:

The diagram provides a structural representation of a game's various components and their interactions.

Central to this ecosystem is the GameManager, responsible for overseeing elements such as the current

scene, score manager, event manager, and others. The Player entity, armed with attributes like health and

position, is equipped with actions like Move(), Shoot(), and TakeDamage(). The Camera interacts closely with

the player, offering a perspective defined by its position and rotation. Player's scores are managed by the

PlayerScore component, which can increase or reset the score.

In parallel, the game features an EnemyManager that maintains a list of active enemies and facilitates their

addition or removal. Individual enemies, such as Zombie and Spider, derive from the core Enemy class,

inheriting properties like health and position. Each enemy type can possess unique behaviours or shared

actions, as denoted by their virtual functions. These behaviours are further structured using a Behaviour Tree

that helps determine which action or behaviour the enemy should execute next.

13 © AIE 2019

User interaction is facilitated through the UIManager, which can activate various menus and manage

elements like health displays. Furthermore, the EventManager deals with in-game events, which can be

triggered or listened to by various other components. Lastly, the PaymentManager is a utility component

responsible for handling in-game purchases or transactions.

Having this visual layout of a script structure will aid the team in modularly developing, maintaining, and

scaling the game's codebase.

Gameplay Systems
Describe in more detail your individual gameplay systems, including how they interact with other systems in your game,

what classes are responsible, and using UML diagrams where appropriate. Eg. If you are developing a random

generation system, then describe how it works! If you’re developing some unique AI or algorithm for a Goblin Sorcerer,

then describe the details of how that will be implemented.

Gameplay System 1 – Player Interactions
Who’s Responsible: Brock

Description: The player represents the main character in the game, with properties like health and in-game

position. They can perform various actions like moving, shooting, and taking damage. The camera's main

function is to follow the player, providing a perspective based on its position and rotation. It also interacts

directly with the player, updating its viewpoint based on player movement and actions.

Interactions:

• ScoreManager: The player's actions, such as eliminating enemies, may contribute to the score which is

managed by the ScoreManager.

• EventManager: Certain player actions may trigger in-game events that are managed and broadcasted

by the EventManager.

• HUD: Displays player's vital stats like health.

Diagram:

14 © AIE 2019

Gameplay System 2 – Enemy Management
Who’s Responsible: Tom

Description: The Enemy Management System handles the spawning, tracking, and behavior of enemies in the

game. The diagram depicts a hierarchy of enemies, including generic ones and specific types like Zombies and

Spiders. These enemies inherit properties like health and position, but each has unique behaviors and actions.

The Behavior Tree plays a crucial role in determining which actions or behaviors the enemy should execute

based on the game state or player's actions.

Interactions:

• GameController: Manages the overall game state, influencing how and when enemies are spawned.

• Player: Enemies aim to challenge the player, thus their behavior is often in response to player actions.

• ScoreManager: The elimination of enemies contributes to the player's score.

Diagram:

15 © AIE 2019

Input Method(s)
Describe the Input method for each target platform (e.g PC / VR / Console).

Target Platform Input System Who is responsible

 Enter each platform/input

Arcade Cabinet Arcade Gun with buttons Brock/Tom

PC Mouse/Keyboard Brock/Tom

16 © AIE 2019

User Interface

Mock-up/concept of main menu

Sketch of gameplay UI

17 © AIE 2019

Concept of gameplay UI and UI elements

18 © AIE 2019

